\(\int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [178]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 125 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 a^{3/2} B \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a^2 (4 A+3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

2*a^(3/2)*B*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+2/3*a^2*(4*A+3*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2
)/(a+a*cos(d*x+c))^(1/2)+2/3*a*A*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {3054, 3059, 2853, 222} \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 a^{3/2} B \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 a^2 (4 A+3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(5/2),x]

[Out]

(2*a^(3/2)*B*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a^2*(4*A + 3*B)*Sin[c + d*x])/(3*
d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]) + (2*a*A*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d*Cos[c + d*
x]^(3/2))

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2}{3} \int \frac {\sqrt {a+a \cos (c+d x)} \left (\frac {1}{2} a (4 A+3 B)+\frac {3}{2} a B \cos (c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (4 A+3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+(a B) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a^2 (4 A+3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {(2 a B) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {2 a^{3/2} B \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a^2 (4 A+3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.85 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (3 \sqrt {2} B \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {3}{2}}(c+d x)+2 (A+(5 A+3 B) \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Integrate[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(5/2),x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(3*Sqrt[2]*B*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^(3/2
) + 2*(A + (5*A + 3*B)*Cos[c + d*x])*Sin[(c + d*x)/2]))/(3*d*Cos[c + d*x]^(3/2))

Maple [A] (verified)

Time = 7.80 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.50

method result size
default \(\frac {2 a \left (3 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \left (\cos ^{2}\left (d x +c \right )\right )+3 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \cos \left (d x +c \right )+5 A \sin \left (d x +c \right ) \cos \left (d x +c \right )+3 B \sin \left (d x +c \right ) \cos \left (d x +c \right )+A \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{3 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {3}{2}}}\) \(188\)
parts \(\frac {2 A \sin \left (d x +c \right ) \left (5 \cos \left (d x +c \right )+1\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a}{3 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {3}{2}}}+\frac {2 B \left (\cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}}\) \(199\)

[In]

int((a+cos(d*x+c)*a)^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3*a/d*(3*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)
^2+3*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)+5*A*s
in(d*x+c)*cos(d*x+c)+3*B*sin(d*x+c)*cos(d*x+c)+A*sin(d*x+c))*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/cos(d*x+c
)^(3/2)

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.06 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \, {\left ({\left ({\left (5 \, A + 3 \, B\right )} a \cos \left (d x + c\right ) + A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 3 \, {\left (B a \cos \left (d x + c\right )^{3} + B a \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )\right )}}{3 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

2/3*(((5*A + 3*B)*a*cos(d*x + c) + A*a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 3*(B*a*cos(
d*x + c)^3 + B*a*cos(d*x + c)^2)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x +
 c))))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)

Sympy [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \left (A + B \cos {\left (c + d x \right )}\right )}{\cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(5/2),x)

[Out]

Integral((a*(cos(c + d*x) + 1))**(3/2)*(A + B*cos(c + d*x))/cos(c + d*x)**(5/2), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1124 vs. \(2 (107) = 214\).

Time = 0.45 (sec) , antiderivative size = 1124, normalized size of antiderivative = 8.99 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

1/6*(3*((a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x +
2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c
) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d
*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
 + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2
 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))
, (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c) + 1)) - 1))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) +
 4*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c))) - (a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c) + 1)))*sqrt(a))*B/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4) + 8*(3*sq
rt(2)*a^(3/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 5*sqrt(2)*a^(3/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 2*sqrt
(2)*a^(3/2)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)*A/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(-sin(d*x + c)
/(cos(d*x + c) + 1) + 1)^(5/2)))/d

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(5/2),x)

[Out]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(5/2), x)